Министерство образования и науки Республики Коми

Региональная предметно-методическая комиссия по физике Всероссийской олимпиады школьников по физике в Республике Коми

Всероссийская олимпиада школьников по физике

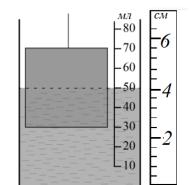
2025-2026 учебный год

Муниципальный этап

1. **Чувство числа**. В 2021 году Банк России выпустил в обращение небольшую 3-рублевую монету, посвященную Республике Коми. Семиклассник Боря, увлекающийся нумизматикой, записал себе в блокнот параметры монеты: масса m=0,034 ..., диаметр D=39 ..., толщина h=0,0000033 Как это часто бывает у семиклассников (начинающих физиков), Боря забыл указать единицы измерения записанных параметров. Приведя рассуждения, опираясь на ваш жизненный опыт, восстановите утерянные единицы измерения. Известно, что масса измеряется в граммах, килограммах или тоннах, а длины — в мм, см, дм, м или км. Определите плотность монеты в г/см 3 . Плотностью тела называется отношение его массы к объему $\rho=\frac{m}{V}$. Площадь круга с диаметром

D равна $\frac{\pi D^2}{4}$.

2. **Куб в сосуде.** В стакан с жидкостью частично погружен кубик. Шкала сосуда проградуирована в миллилитрах, а к сосуду приставлена сантиметровая линейка. Стенки стакана вертикальны. Пользуясь данными с рисунка, определите:

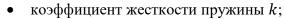


- Цену деления линейки;
- Площадь внутреннего сечения сосуда;
- Объем кубика;
- Объем жидкости;
- 3. **Коми? Значит лыжник!** Петя и Вася решили пробежать десятикилометровую трассу по сыктывкарской лыжне. Петя начал бежать с очень большой скоростью, но на полпути выдохся и остановился выпить чаю. После получасового перерыва, Петя продолжил движение по дистанции с прежней скоростью. Вася же двигался по всему маршруту с постоянной скоростью без перерывов. Известно, что после одновременного старта, мальчики прибежали на финиш также одновременно через час после старта.
 - Начертите графики пути от времени для обоих мальчиков на одном полотне;
 - Определите скорости движения мальчиков;
 - Через какое время после старта Вася обогнал Петю?
 - Какое максимальное расстояние было между мальчиками в процессе движения? Через какое время после старта?
- 4. **По Печоре.** На каникулах семиклассник Петя сплавлялся по реке Печора на плоту. Решив немного размяться, он спрыгнул с плота и поплыл по течению реки в течение t=5 минут. Утомившись, он быстро развернулся и поплыл обратно к плоту. Собственная скорость мальчика $v=1\frac{M}{c}$, а скорость течения реки $u=0,5\frac{M}{c}$. Сколько времени займет обратная дорога? Чему равна средняя скорость Пети v_1 при движении туда-обратно? Семиклассник Вася проледал похожее упражнение. От неполвижной пристани он

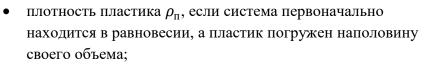
Семиклассник Вася проделал похожее упражнение. От неподвижной пристани он t=5 минут плыл по течению, затем, развернувшись, доплыл обратно до пристани. Сколько времени заняла обратная дорога Васи, если он плавает так же, как Петя? Чему равна средняя скорость Васи v_2 при движении туда-обратно?

Время выполнения 180 минут! 8 класс

- 1. **Средняя скорость.** Первую часть пути автомобиль двигался со скоростью $v_1 = 80 \frac{\text{км}}{\text{ч}}$, а вторую со скоростью $v_2 = 20 \frac{\text{км}}{\text{ч}}$. Оказалось, что первый участок занял k-ую часть всего времени движения, а второй участок составлял k-ую часть всего пути. Определите:
 - коэффициент k;
 - среднюю скорость движения автомобиля v.
- 2. Это уровень! На пружине висит цилиндрический сосуд с водой. Когда в сосуд начали медленно доливать воду, поверхность воды в сосуде оставалась относительно земли на прежнем уровне. Площадь внутреннего сечения сосуда S, плотность воды ρ , ускорение свободного падения g. Вода из сосуда не выливается. Определите:



- скорость нижнего конца пружины v_0 , если воду в сосуд доливали с массовым расходом μ ;
- во сколько раз средняя точка пружины движется медленнее, чем нижняя точка.
- 3. **Блок.** В цилиндрическом стакане с площадью основания $S=10~{\rm cm}^2$ в воде плавают кусок льда и кусок пластика, соединенные легкой нитью, перекинутой через блок, прикрепленный нитью ко дну. Кусок пластика, кусок льда и блок имеют одинаковые объемы $V=10~{\rm cm}^3$. Плотность воды $\rho_{\rm B}=1000\frac{{\rm kr}}{{\rm m}^3}$, плотность льда $\rho_{\rm A}=900\frac{{\rm kr}}{{\rm m}^3}$. Определите:



- какую максимальную плотность ρ может иметь блок, чтобы всё ещё плавать?
- насколько и в какую сторону изменится уровень воды в стакане после того, как лед растает (рассмотреть для всех возможных плотностей блока)?
- 4. **Тепловые скорости.** В калориметр помещают два тела равной массы с температурами $t_1=60\,^{\circ}\text{C}$ и $t_2=0\,^{\circ}\text{C}$ соответственно. Вначале горячее тело остывает со скоростью $\gamma_1=1\,\frac{^{\circ}\text{C}}{^{\circ}\text{C}}$, а холодное нагревается со скоростью $\gamma_2=2\,\frac{^{\circ}\text{C}}{^{\circ}\text{C}}$. Определите:
 - отношение удельных теплоемкостей тел c_1/c_2 ;
 - температуру тел *t* после завершения теплообмена.

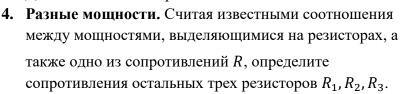
- 1. Равномерно или ускоренно? Внешний диаметр скотча при разматывании уменьшается с постоянной скоростью $D(t) = D_0 ut$. Как зависит от времени длина размотанной части скотча x(t)? Явно выпишите параметры полученной зависимости x(t), например, начальную скорость увеличения длины размотанной части v_0 и ускорение a (если оно постоянно), с которой эта скорость изменяется. Считайте известными начальный диаметр скотча D_0 , скорость u и толщину скотча u.
- 2. Это уровень! На пружине висит цилиндрический сосуд с водой. Когда в сосуд начали медленно доливать воду, поверхность воды в сосуде оставалась относительно земли на прежнем уровне. Площадь внутреннего сечения сосуда *S*, плотность воды *ρ*, ускорение свободного падения *g*. Вода из сосуда не выливается. Определите:
 - коэффициент жесткости пружины k;
 - скорость нижнего конца пружины v_0 , если воду в сосуд доливали с массовым расходом μ ;
 - во сколько раз средняя точка пружины движется медленнее, чем нижняя точка.
- 3. **Блок.** В цилиндрическом стакане с площадью основания $S=10~{\rm cm}^2$ в воде плавают кусок льда и кусок пластика, соединенные легкой нитью, перекинутой через блок, прикрепленный нитью ко дну. Кусок пластика, кусок льда и блок имеют одинаковые объемы $V=10~{\rm cm}^3$. Плотность воды $\rho_{\rm B}=1000\frac{{\rm K}\Gamma}{{\rm m}^3}$, плотность льда $\rho_{\rm A}=900\frac{{\rm K}\Gamma}{{\rm m}^3}$. Определите:
 - плотность пластика $\rho_{\rm n}$, если система первоначально находится в равновесии, а пластик погружен наполовину своего объема;
 - какую максимальную плотность ρ может иметь блок, чтобы всё ещё плавать?
 - насколько и в какую сторону изменится уровень воды в стакане после того, как лед растает (рассмотреть для всех возможных плотностей блока)?

R, 3P

- 4. **Тепловые скорости.** В калориметр помещают два тела равной массы с температурами $t_1=60$ °C и $t_2=0$ °C соответственно. Вначале горячее тело остывает со скоростью $\gamma_1=1$ $\frac{^{\circ}\text{C}}{^{\circ}\text{C}}$, а холодное нагревается со скоростью $\gamma_2=2$ $\frac{^{\circ}\text{C}}{^{\circ}\text{C}}$. Определите:
 - отношение удельных теплоемкостей тел c_1/c_2 ;
 - температуру тел t после завершения теплообмена.
- **5. Разные мощности.** Считая известными соотношения между мощностями, выделяющимися на резисторах, а также одно из сопротивлений R, определите сопротивления остальных трех резисторов R_1 , R_2 , R_3 .

Время выполнения 230 минут!

- 1. Равномерно или ускоренно? Внешний диаметр скотча при разматывании уменьшается с постоянной скоростью $D(t) = D_0 ut$. Как зависит от времени длина размотанной части скотча x(t)? Явно выпишите параметры полученной зависимости x(t), например, начальную скорость увеличения длины размотанной части v_0 и ускорение a (если оно постоянно), с которой эта скорость изменяется. Считайте известными начальный $\downarrow g$ диаметр скотча D_0 , скорость u и толщину скотча u.
- **2. Кидаем в гору!** На расстоянии L от начала наклонной плоскости, поверхность которой образует угол α с горизонтом, бросают камень под таким же углом к горизонту в сторону наклонной плоскости. Определите время полета камня. Наклонная плоскость длинная, сопротивления воздуха нет. Ускорение свободного падения g.
- 3. **В бассейне.** Пловец массой m=50 кг отталкивается от бортиков бассейна. Сила давления от бортика изменяется так, как показано на рисунке (величины $F_0=1$ кН и $t_0=0.1$ с считайте известными). Определите скорость пловца v_0 сразу после толчка и расстояние L от бортика, на котором остановится пловец, если после толчка не будет прилагать усилий. Сила сопротивления, действующая со стороны воды на пловца, пропорциональна его скорости $\overrightarrow{F_c} = -k\overrightarrow{v}$ ($k=100\frac{\text{кr}}{\text{c}}$). Смещением пловца за время отталкивания можно пренебречь. Сила тяжести пловца компенсируется силой Архимеда. Движение пловца горизонтально.



5. Работают оба полушария. На стеклянное полушарие радиусом R попадает узкий пучок света диаметром $D \ll R$. После преломления в этом полушарии пучок света фокусируется в точке F. К этой точке приставляют другое такое же полушарие, а на расстоянии R/2 от второго полушария ставят экран. Показатель преломления стекла равен n. Пучок света и оба полушария соосны.

 $F = \frac{3}{R}$

0

 R_1 , 8P

R. 3P

 R_3 , 4P

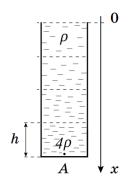
 R_2 , 9P

 t/t_0

Отражением пренебречь. Определите фокусное расстояние F и площадь светового пятна на экране. При каких показателях преломления стекла площадь светового пятна будет больше, чем исходная площадь пучка?

Время выполнения 230 минут!

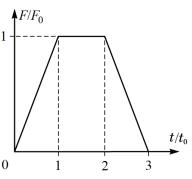
11.1. В невесомости? В сосуд высотой 4h налита жидкость, плотность которой изменяется линейно с глубиной от ρ до 4ρ . Слои жидкостей не перемешиваются. Ускорение свободного падения g. В сосуд опускают маленькую каплю масла плотностью 2ρ , не смешивающегося с жидкостью в сосуде.



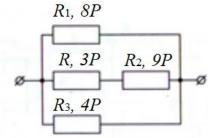
- 1) На какой глубине окажется капля в состоянии равновесия?
- 2) Какую форму будет иметь капля в состоянии равновесия? Ответ обоснуйте.

11.2. В бассейне. Пловец массой m=50 кг отталкивается от бортиков бассейна. Сила

давления от бортика изменяется так, как показано на рисунке (величины $F_0=1$ кН и $t_0=0.1$ с считайте известными). Попределите скорость пловца v_0 сразу после толчка и расстояние L от бортика, на котором остановится пловец, если после толчка не будет прилагать усилий. Сила сопротивления, действующая со стороны воды на пловца, пропорциональна его скорости $\overrightarrow{F_c}=-k\overrightarrow{v}$ ($k=100\frac{\mathrm{KF}}{\mathrm{c}}$). Смещением пловца за время отталкивания можно пренебречь. Сила тяжести пловца компенсируется силой Архимеда. Движение пловца горизонтально.

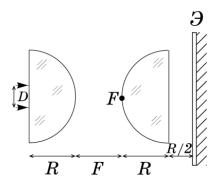


- **11.3. Максимальный угол.** Небольшая равномерно заряженная диэлектрическая пылинка, имеющая форму шара радиусом R, помещена внутрь плоского воздушного конденсатора, обкладки которого имеют поверхностные заряды $\pm \sigma$. Определите заряд пылинки q, если максимальный угол между векторами напряженности результирующего поля и нормалями обкладок равен $\alpha = 30^{\circ}$? Краевыми эффектами пренебречь.
- **11.4. Разные мощности.** Считая известными соотношения между мощностями, выделяющимися на резисторах, а также одно из сопротивлений R, определите сопротивления остальных трех резисторов R_1 , R_2 , R_3 .



11.5. Работают оба полушария. На стеклянное полушарие

радиусом R попадает узкий пучок света диаметром $D \ll R$. После преломления в этом полушарии пучок света фокусируется в точке F. К этой точке приставляют другое такое же полушарие, а на расстоянии R/2 от второго полушария ставят экран. Показатель преломления стекла равен n. Пучок света и оба полушария соосны. Отражением пренебречь. Определите фокусное расстояние F и площадь светового пятна на экране. При каких показателях преломления стекла площадь светового пятна будет больше, чем исходная площадь пучка?



РЕШЕНИЯ

7.1. Чувство числа (Рубцов Д.)

В 2021 году Банк России выпустил в обращение небольшую 3-рублевую монету, посвященную Республики Коми. Семиклассник Боря, увлекающийся нумизматикой, записал себе в блокнот параметры монеты: масса m=0.034 ..., диаметр D=39 ..., толщина h=0.0000033 Как это часто бывает у семиклассников (начинающих физиков), Боря забыл указать единицы измерения записанных параметров. Приведя рассуждения, опираясь на ваш жизненный опыт, восстановите утерянные единицы измерения. Известно, что масса измеряется в граммах, килограммах или тоннах, а длины — в

мм, см, дм, м или км. Определите среднюю плотность монеты в r/cm^3 .

Решение.

Масса монет не превосходит нескольких грамм, так что m=3.4 г = 0,0034 кг = 0,0000034 т или m=34 г = 0,034 кг = 0,000034 т. Подходит второй вариант.

Диаметр монеты обычно порядка сантиметров $D=3.9~\mathrm{cm}=39~\mathrm{mm}$. Типичная толщина – это несколько мм $h=3.3~\mathrm{mm}=0.33~\mathrm{cm}=0.033~\mathrm{gm}=0.0033~\mathrm{m}=0.000033~\mathrm{km}$.

Итак, масса m=0.034 кг, диаметр D=39 мм, толщина h=0.0000033 км.

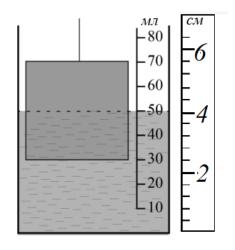
Объем монеты
$$V=Sh=\frac{\pi D^2}{4}h=3,94$$
 см 3 . Тогда плотность $\rho=\frac{m}{V}=\frac{34\Gamma}{3,94$ см $^3}=8,6\frac{\Gamma}{\text{см}^3}$.

1	$m=0{,}034$ кг	2 балла
2	D = 39 MM	2 балла
3	h = 0,0000033 км	2 балла
4	V = Sh	1 балл
5	$V = 3,94 \text{ см}^3$	1 балл
6	$ ho=rac{m}{V}$	1 балл
7	$\rho = 8.6 \frac{\Gamma}{\text{cm}^3}$	1 балл

7.2. Куб в сосуде (Рубцов Д.)

В сосуд овального сечения с жидкостью частично погружен кубик. Шкала сосуда проградуирована в миллилитрах, а к сосуду приставлена сантиметровая линейка. Пользуясь данными с рисунка, определите:

- 2) Площадь внутреннего сечения сосуда;
- 3) Объем кубика;
- 4) Объем жидкости;



Решение:

На пяти ценах деления укладывается 2 см, так что цена деления $\frac{2\text{см}}{5} = 0.4$ см.

20 миллилитрам на шкале сосуда соответствует 4 цены деления линейки или 1,6 см. Таким образом, площадь внутреннего сечения сосуда $S = \frac{20 \text{ см}^3}{1.6 \text{ см}} = 12,5 \text{ см}^2$.

Сторона куба равна 8 * 0,4 см = 3,2 см. Объем кубика $V_{\text{кубика}} = (3,2 \text{ см})^3 = 32,768 \text{ см}^3 \approx 32,8 \text{ см}^3$.

Кубик погружен в жидкость наполовину своего объема 16,4 см³. Остальные (50 - 16,4)см³ = 33,6 см³ заняты жидкостью.

1	TT 0.4	1.7
1	Цена деления 0,4 см	1 балл
2	Указано, что 20 миллилитрам на шкале сосуда	1 балл
	соответствует 4 цены деления линейки	
3	Найдена площадь внутреннего сечения сосуда	2 балла
	12,5 см ²	(без правильных единиц
		измерения ставится только 1
		балл)
4	Найдена сторона куба 3,2 см	1 балл
5	Найден объем кубика 32,8 см ³	2 балла
		(без правильных единиц
		измерения ставится только 1
		балл)
6	Указано, что кубик погружен наполовину	1 балл
7	Найден объем жидкости 33,6 см ³	2 балла
		(без правильных единиц
		измерения ставится только 1
		балл)

7.3. Коми? Значит лыжник! (Рубцов Д.)

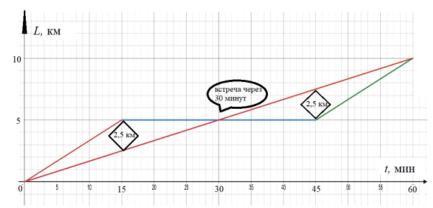
Петя и Вася решили пробежать десятикилометровую трассу по сыктывкарской лыжне. Петя начал бежать с очень большой скоростью, но на полпути выдохся и остановился выпить чаю. После получасового перерыва, Петя продолжил движение по дистанции с прежней скоростью. Вася же двигался по всему маршруту с постоянной скоростью без перерывов. Известно, что после одновременного старта, мальчики прибежали на финиш также одновременно через час после старта.

- 1) Начертите графики пути от времени для обоих мальчиков на одном полотне;
- 2) Определите скорости движения мальчиков;
- 3) Через какое время после старта Вася обогнал Петю?
- 4) Какое максимальное расстояние было между мальчиками в процессе движения? Через какое время после старта?

Решение.

Так как Петя на первом участке и на третьем участке пробежал по полпути (5 км) с

одинаковыми скоростями, то они у него заняли одинаковое время. Все время движения 1 час, время перерыва 30 минут, тогда первый и третий участки длились по 15 минут.



Петя бежит 5 км за 15 мин = $\frac{1}{4}$ часа, то есть со скоростью 20 км/ч. Вася бежит 10 км за 1 час, то есть со скоростью 10 км/ч. Из графика видно, что пересечение графиков (встреча мальчиков) произошло через 0,5 часа после начала движения. Максимальное расстояние между мальчиками было через 15 минут и через 45 минут после начала движения и составляло 2,5 км.

1	График	4 балла
	• Оси подписаны	• 1 балл
	• Верный график Васи	• 1 балл
	• Верный график Пети	 2 балла
2	Скорость Пети 20 км/ч	1 балл
3	Скорость Васи 10 км/ч	1 балл
4	Встреча мальчиков – через 0,5 часа после начала	1 балл
	движения	
5	Максимальное расстояние между мальчиками было	2 балла (по одному баллу)
	через 15 минут и через 45 минут после начала	
	движения	
6	Максимальное расстояние между мальчиками	1 балл
	составляло 2,5 км	

7.4. По Печоре (Рубцов Д.)

На каникулах семиклассник Петя сплавлялся по реке Печора на плоту. Решив немного размяться, он спрыгнул с плота и поплыл по течению реки в течение t=5 минут. Утомившись, он быстро развернулся и поплыл обратно к плоту. Собственная скорость мальчика $v=1\frac{M}{c}$, а скорость течения реки $u=0,5\frac{M}{c}$. Сколько времени займет обратная дорога? Чему равна средняя скорость Пети v_1 при движении туда-обратно?

Семиклассник Вася проделал похожее упражнение. От неподвижной пристани он t=5 минут плыл по течению, затем, развернувшись, доплыл обратно до пристани. Сколько времени заняла обратная дорога Васи, если он плавает так же, как Петя? Чему равна средняя скорость Васи v_2 при движении туда-обратно?

Решение.

Про Петию. Перейдем в систему отсчета плота (реки). В этой системе отсчета Петя плывет t=5 минут со скоростью $v=1\frac{M}{c}$ в одну сторону, а затем, развернувшись, плывет с той же скоростью и, очевидно, те же t=5 минут в обратную сторону. В системе отсчета Земли в одну сторону мальчик плывет со скоростью v+u, а в обратную с v-u.

Средняя скорость движения
$$v_1 = \frac{(v+u)t + (v-u)t}{2t} = v = 1$$
 м/с.

Про Васю. В этом случае пристань неподвижна. Переходить в систему отсчета реки нет смысла. Вася уплывает туда на S=(v+u)t. Обратно придется проплыть то же расстояние за время $t'=\frac{S}{v-u}=\frac{v+u}{v-u}t=15$ минут.

Средняя скорость движения
$$v_2 = \frac{2S}{\frac{S}{v+u} + \frac{S}{v-u}} = \frac{(v-u)(v+u)}{v} = \frac{v^2 - u^2}{v} = 0,75$$
 м/с.

1	Обоснование, что в случае Пети время и туда, и обратно одинаково	2 балла
2	Указано, что в системе отсчета Земли в одну сторону мальчики плывут со скоростью $v+u$, а в обратную с $v-u$	1 балл
3	Есть формула средней скорости	1 балл
4	$v_1 = v = 1 \text{ m/c}$	1 балл
5	Есть понимание, что в случае Васи одинаковы	1 балл
	пройденные расстояния и туда, и обратно	
6	S = (v + u)t	1 балл
7	$t' = \frac{v+u}{v-u}t = 1$ 5 минут	1 балл
8	$v_2 = \frac{(v-u)(v+u)}{v} = \frac{v^2 - u^2}{v} = 0.75 \text{ m/c}$	2 балла

8.1. Средняя скорость (фольклор)

Первую часть пути автомобиль двигался со скоростью $v_1=80\frac{{\rm KM}}{{\rm q}},\;$ а вторую — со скоростью $v_2=20\frac{{\rm KM}}{{\rm q}}.\;$ Оказалось, что первый участок занял k-ую часть всего времени движения, а второй участок составлял k-ую часть всего пути. Определите:

- коэффициент k;
- среднюю скорость движения автомобиля v.

Решение

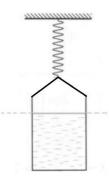
Обозначим длину всего маршрута за S, время за t. Время на первом участке kt, а на втором (1-k)t. Путь на первом участке (1-k)S, а на втором kS. Скорость на первом участке $v_1 = \frac{(1-k)S}{kt}$, на втором участке $v_2 = \frac{kS}{(1-k)t}$.

Перемножим последние два равенства: $v_1v_2=\left(\frac{s}{t}\right)^2$. Но $\frac{s}{t}$ – это средняя скорость $v=\frac{s}{t}$. Так что $v=\sqrt{v_1v_2}=40\frac{\kappa M}{q}$.

Если же те два равества поделить, то получим
$$\left(\frac{1-k}{k}\right)^2 = \frac{v_1}{v_2}$$
, то есть $k = \frac{1}{1+\sqrt{\frac{v_1}{v_2}}} = \frac{1}{3}$.

		1
1	Средняя скорость $v = \frac{S}{t}$ (определение)	2 балла
2	Время на первом участке kt , а на втором $(1-k)t$	1 балл
3	Путь на первом участке $(1-k)S$, а на втором kS	1 балл
4	(1-k)S	1 балл
	$v_1 = \frac{1}{kt}$	
5	kS	1 балл
	$v_2 = \frac{1}{(1-k)t}$	
6	$v = \sqrt{v_1 v_2} = 40 \frac{\text{KM}}{\text{Y}}$	2 балла (1 балл формула и 1 балл
	$v = \sqrt{v_1 v_2} = 10$	число)
7	, 1 1	2 балла (1 балл формула и 1 балл
	$\kappa = \frac{1}{ v_1 } = \frac{1}{3}$	число)
	$1 + \sqrt{\frac{v_1}{v_2}}$	
	<u> </u>	

8.2. Это уровень! (Рубцов Д.) На пружине висит цилиндрический сосуд с водой. Когда в сосуд начали медленно доливать воду, поверхность воды в сосуде оставалась относительно земли на прежнем уровне. Площадь внутреннего сечения сосуда S, плотность воды ρ , ускорение свободного падения g. Вода из сосуда не выливается. Определите:



- коэффициент жесткости пружины k;
- скорость нижнего конца пружины v_0 , если воду в сосуд доливали с массовым расходом μ ;
- во сколько раз средняя точка пружины движется медленнее, чем нижняя точка.

Решение:

Пусть в сосуд добавили порцию воды массой Δm и объемом $\Delta V = \frac{\Delta m}{\rho}$. Тогда уровень воды в сосуде относительно его дна увеличился на $\Delta y = \frac{\Delta V}{S} = \frac{\Delta m}{\rho S}$.

Сосуд находится в равновесии, так как сила упругости пружины компенсирует силу тяжести $F_{\rm ynp}=mg$. Тогда изменение силы тяжести Δmg равно изменению силы упругости $k\Delta x$, то есть при добавлении в сосуд порции воды массой Δm нижняя точка пружины опускается на $\Delta x=\frac{\Delta mg}{k}$.

Так как поверхность воды в сосуде оставалась относительно земли на прежнем уровне, то $\Delta x = \Delta y$. Так что коэффициент жесткости $k = \rho g S$.

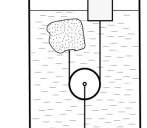
Из полученной ранее формулы $\Delta x = \frac{\Delta mg}{k}$ при подстановке $\Delta x = v_0 \Delta t$ и $\Delta m = \mu \Delta t$ следует ответ на второй вопрос задачи $v_0 = \frac{\mu g}{k} = \frac{\mu}{\rho S}$.

Средняя точка пружины всегда находится посередине между неподвижной верхней точкой пружины и нижней точкой, так что ее скорость всегда в 2 раза меньше, чем у нижней точки.

1	Связь массы и объема $\Delta V = \frac{\Delta m}{\rho}$	0,5 балла
2	Связь объема и изменения уровня $\Delta y = \frac{\Delta V}{S}$	0,5 балла
3	Условие равновесия $F_{ynp} = mg$	0,5 балла
4	Продемонстрировано знание закона Гука	0,5 балла
5	Условие $\Delta x = \Delta y$ или аналогичное	1 балл
6	Otbet $k = \rho g S$	2 балла
7	Связь $\Delta x = v_0 \Delta t$	0,5 балла
8	Связь $\Delta m = \mu \Delta t$	0,5 балла
9	Otbet $v_0 = \frac{\mu}{\rho S}$	2 балла
10	Ответ: скорость средней точки в два раза меньше	1 балл
11	Обоснование: средняя точка посередине	1 балл

8.3. Блок (Рубцов Д.). В цилиндрическом стакане с площадью основания $S = 10 \text{ см}^2$ в воде плавают кусок льда и кусок пластика, соединенные легкой нитью, перекинутой через блок, прикрепленный нитью ко дну. Кусок пластика, кусок льда и блок

имеют одинаковые объемы $V=10~{\rm cm}^3$. Плотность воды $\rho_{\rm B}=1000\frac{{\rm \kappa r}}{{\rm m}^3}$, плотность льда $\rho_{\rm A}=900\frac{{\rm \kappa r}}{{\rm m}^3}$. Определите:



- плотность пластика $\rho_{\rm II}$, если система первоначально находится в равновесии, а пластик погружен наполовину своего объема;
- какую максимальную плотность ρ может иметь блок, чтобы всё ещё плавать?
- насколько и в какую сторону изменится уровень воды в стакане после того, как лед растает (рассмотреть для всех возможных плотностей блока)?

Решение:

На лед действуют сила Архимеда $\rho_{\rm B}gV$, сила тяжести $\rho_{\rm A}gV$ и сила натяжения нити T. На пластик действует в два раза меньшая сила Архимеда ($\rho_{\rm B}gV/2$), так как он погружен наполовину своего объема, и сила тяжести $\rho_{\rm \Pi}gV$. На блок действуют две силы натяжения нити T, собственная сила тяжести ρgV , сила Архимеда $\rho_{\rm B}gV$ и сила натяжения нижней нити T_0 . Условия равновесия тел: $T+\rho_{\rm A}gV=\rho_{\rm B}gV$, $T+\rho_{\rm \Pi}gV=\frac{\rho_{\rm B}gV}{2}$, $2T+\rho_{\rm B}gV=\rho gV+T_0$. Получаем, что плотность пластика равна $\rho_{\rm \Pi}=\rho_{\rm A}-\frac{\rho_{\rm B}}{2}=400\,\frac{{\rm Kr}}{{\rm M}^3}$.

Плотность блока не может превосходить той, при которой он еще находится в равновесии, а сила натяжения нижней нити T_0 обращается в ноль. Получим, что максимальная плотность блока $\rho = 3\rho_{\rm B} - 2\rho_{\rm A} = 1200 \frac{{\rm Kr}}{{\rm m}^3}$.

Уровень изменится за счет уменьшения объема льда(который стал водой) $\Delta V_1 = \frac{\rho_{\rm B} - \rho_{\rm A}}{\rho_{\rm B}} V$ и за счет уменьшения объема погруженной части пластика $\Delta V_2 = \left(\frac{1}{2} - \left(\frac{\rho_{\rm A} - \frac{\rho_{\rm B}}{2}}{\rho_{\rm B}}\right)\right) V =$

 $\frac{
ho_{
m B}ho_{
m R}}{
ho_{
m B}}V$. Блок либо останется плавать (из-за нижней нити), либо упадет на дно сосуда, В любом случае, на изменение уровня воды это не повлияет. Уменьшение уровня воды $\Delta h = \frac{\Delta V_1 + \Delta V_2}{S} = \frac{
ho_{
m B}ho_{
m R}}{
ho_{
m B}}\frac{2V}{S} = 0,2$ см.

1	Расстановка сил для льда	0,5
2	Для пластика	0,5
3	Для блока	0,5
4	Условие равновесия для льда	0,5
5	Для пластика	0,5
6	Для блока	0,5
7	Плотность пластика $ ho_{\scriptscriptstyle \Pi} = ho_{\scriptscriptstyle \Lambda} - rac{ ho_{\scriptscriptstyle B}}{2}$	1,0
8	Численное значение для плотности $\rho_{\Pi} = 400 \frac{\kappa \Gamma}{M^3}$	0,5

9	Условие максимальности плотности блока	0,5
10	Ответ для плотности блока $ ho = 3 ho_{\scriptscriptstyle m B} - 2 ho_{\scriptscriptstyle m A}$	1,0
11	Численное значение $\rho = 1200 \frac{\text{кг}}{\text{м}^3}$	0,5
12	Выражение для изменения объема льда	0,5
13	Выражение для объема погруженной части пластика	0,5
14	Явно написано, что ответ не зависит от плотности блока	0,5
15	Уровень воды уменьшится	0,5
16	Ответ для изменения высоты $\Delta h = \frac{\rho_{\text{B}} - \rho_{\text{Л}}}{\rho_{\text{B}}} \frac{2V}{S}$	1,0
17	Численное значением $\Delta h = 0.2$ см	0,5

- **8.4. Тепловые скорости (фольклор)** В калориметр помещают два тела равной массы с температурами $t_1=60$ °C и $t_2=0$ °C соответственно. Вначале горячее тело остывает со скоростью $\gamma_1=1$ $\frac{^{\circ}\text{C}}{^{\circ}}$, а холодное нагревается со скоростью $\gamma_2=2$ $\frac{^{\circ}\text{C}}{^{\circ}}$. Определите:
 - отношение удельных теплоемкостей тел c_1/c_2 ;
 - температуру тел t после завершения теплообмена.

Решение.

За небольшое время $\Delta \tau$ первое тело остыло на $\gamma_1 \Delta \tau$ градусов Цельсия, а второе тело нагрелось на $\gamma_2 \Delta \tau$ градусов Цельсия. Уравнение теплового баланса $c_1 m \gamma_1 \Delta \tau = c_2 m \gamma_2 \Delta \tau$, откуда $\frac{c_1}{c_2} = \frac{\gamma_2}{\gamma_1} = 2$.

Уравнение теплового баланса $c_1m(t_1-t)=c_2m(t-t_2)$. С учетом $\frac{c_1}{c_2}=\frac{\gamma_2}{\gamma_1}=2$ получим искомый ответ $t=\frac{\gamma_1t_2+\gamma_2t_1}{\gamma_1+\gamma_2}=\frac{2t_1+t_2}{3}=40$ °C.

1	Малое изменение температуры выражено через малое изменение	1 балл
	времени $\Delta t = \gamma \Delta \tau$	
2	Уравнение теплового баланса для небольшого времени остывания	3 балла
	$c_1 m \gamma_1 \Delta \tau = c_2 m \gamma_2 \Delta \tau$	
3	$\frac{c_1}{c_2} = \frac{\gamma_2}{\gamma_2} = 2$	1 балл
	c_2 γ_1	
4	$\frac{c_1}{c_2} = 2$	1 балл
	c_2	
5	Уравнение теплового баланса (нахождение конечной температуры)	2 балла
	$c_1 m(t_1 - t) = c_2 m(t - t_2)$	
6	$t = \frac{\gamma_1 t_2 + \gamma_2 t_1}{\gamma_1 t_2 + \gamma_2 t_1}$	1 балл
	$\iota = \frac{1}{\gamma_1 + \gamma_2}$	
7	$t=40^{\circ}\mathrm{C}$	1 балл

9.1. Равномерно или ускоренно? (Рубцов Д.) Внешний диаметр скотча при разматывании уменьшается с постоянной скоростью $D(t) = D_0 - ut$. Как зависит от времени длина размотанной части скотча x(t)? Явно выпишите параметры полученной зависимости x(t), например, начальную скорость увеличения длины размотанной части v_0 и ускорение a (если оно постоянно), с которой эта скорость изменяется. Считайте известными начальный диаметр скотча D_0 , скорость u и толщину скотча u.

Решение.

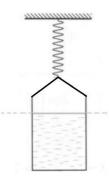
Объем ленты скотча при разматывании не изменяется. Пусть внутренний диаметр скотча d, а ширина скотча l. Тогда начальный объем скотча $V=\frac{\pi(D_0^2-d^2)}{4}l$. В произвольный момент времени после разматывания объем скотча $V=\frac{\pi((D_0-ut)^2-d^2)}{4}l+x(t)hl$. Из равенства объемов следует

$$x(t) = \frac{\pi D_0 u}{2h} t - \frac{\pi u^2}{2h} t^2 = v_0 t - \frac{at^2}{2}$$

Таким образом, начальная длина размотанной части скотча увеличивается со скоростью $v_0 = \frac{\pi D_0 u}{2h}$. Эта скорость, в свое время, по ходу движения уменьшается со скоростью $a = \frac{\pi u^2}{2h}$.

1	Идея сохранения объемов	2 балла
2	Начальный объем $\frac{\pi(D_0^2-d^2)}{4}l$ или $\frac{\pi D_0^2}{4}l$	1 балл
3	Объем рулона в произвольный момент времени	1 балл
	$\left[rac{\pi \left((D_0 - ut)^2 - d^2 ight)}{4} l$ или $rac{\pi \left((D_0 - ut)^2 ight)}{4} l$	
4	Объем размотанной части скотча в произвольный момент времени	1 балл
	x(t)hl	
5	πu^2_{+2}	2 балла
	$x(t) = \frac{\pi D_0 u}{2h} t - \frac{\pi u^2}{2h} t^2$	
6	$\pi D_0 u$	1 балл
	$v_0 = \frac{1}{2h}$	
7	πu^2 πu^2	2 балла
	$a=rac{\pi u^2}{2h}$ или $a=-rac{\pi u^2}{2h}$	

9.2. Это уровень! (Рубцов Д.) На пружине висит цилиндрический сосуд с водой. Когда в сосуд начали медленно доливать воду, поверхность воды в сосуде оставалась относительно земли на прежнем уровне. Площадь внутреннего сечения сосуда S, плотность воды ρ , ускорение свободного падения g. Вода из сосуда не выливается. Определите:



- коэффициент жесткости пружины k;
- скорость нижнего конца пружины v_0 , если воду в сосуд доливали с массовым расходом μ ;
- во сколько раз средняя точка пружины движется медленнее, чем нижняя точка.

Решение:

Пусть в сосуд добавили порцию воды массой Δm и объемом $\Delta V = \frac{\Delta m}{\rho}$. Тогда уровень воды в сосуде относительно его дна увеличился на $\Delta y = \frac{\Delta V}{S} = \frac{\Delta m}{\rho S}$.

Сосуд находится в равновесии, так как сила упругости пружины компенсирует силу тяжести $F_{\rm ynp}=mg$. Тогда изменение силы тяжести Δmg равно изменению силы упругости $k\Delta x$, то есть при добавлении в сосуд порции воды массой Δm нижняя точка пружины опускается на $\Delta x=\frac{\Delta mg}{k}$.

Так как поверхность воды в сосуде оставалась относительно земли на прежнем уровне, то $\Delta x = \Delta y$. Так что коэффициент жесткости $k = \rho g S$.

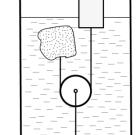
Из полученной ранее формулы $\Delta x = \frac{\Delta mg}{k}$ при подстановке $\Delta x = v_0 \Delta t$ и $\Delta m = \mu \Delta t$ следует ответ на второй вопрос задачи $v_0 = \frac{\mu g}{k} = \frac{\mu}{\rho S}$.

Средняя точка пружины всегда находится посередине между неподвижной верхней точкой пружины и нижней точкой, так что ее скорость всегда в 2 раза меньше, чем у нижней точки.

1	Связь массы и объема $\Delta V = \frac{\Delta m}{\rho}$	0,5 балла
2	Связь объема и изменения уровня $\Delta y = \frac{\Delta V}{S}$	0,5 балла
3	Условие равновесия $F_{\text{упр}} = mg$	0,5 балла
4	Продемонстрировано знание закона Гука	0,5 балла
5	Условие $\Delta x = \Delta y$ или аналогичное	1 балл
6	Otbet $k = \rho g S$	2 балла
7	Связь $\Delta x = v_0 \Delta t$	0,5 балла
8	Связь $\Delta m = \mu \Delta t$	0,5 балла
9	Otbet $v_0 = \frac{\mu}{\rho s}$	2 балла
10	Ответ: скорость средней точки в два раза меньше	1 балл
11	Обоснование: средняя точка посередине	1 балл

9.3. Блок (Рубцов Д.). В цилиндрическом стакане с площадью основания $S = 10 \text{ см}^2$ в воде плавают кусок льда и кусок пластика, соединенные легкой нитью, перекинутой через блок, прикрепленный нитью ко дну. Кусок пластика, кусок льда и блок

имеют одинаковые объемы $V=10~{\rm cm}^3$. Плотность воды $\rho_{\rm B}=1000\frac{{\rm кr}}{{\rm m}^3}$, плотность льда $\rho_{\rm A}=900\frac{{\rm kr}}{{\rm m}^3}$. Определите:



- плотность пластика $\rho_{\rm II}$, если система первоначально находится в равновесии, а пластик погружен наполовину своего объема;
- какую максимальную плотность ρ может иметь блок, чтобы всё ещё плавать?
- насколько и в какую сторону изменится уровень воды в стакане после того, как лед растает (рассмотреть для всех возможных плотностей блока)?

Решение:

На лед действуют сила Архимеда $\rho_{\rm B}gV$, сила тяжести $\rho_{\rm A}gV$ и сила натяжения нити T. На пластик действует в два раза меньшая сила Архимеда ($\rho_{\rm B}gV/2$), так как он погружен наполовину своего объема, и сила тяжести $\rho_{\rm \Pi}gV$. На блок действуют две силы натяжения нити T, собственная сила тяжести ρgV , сила Архимеда $\rho_{\rm B}gV$ и сила натяжения нижней нити T_0 . Условия равновесия тел: $T+\rho_{\rm A}gV=\rho_{\rm B}gV$, $T+\rho_{\rm \Pi}gV=\frac{\rho_{\rm B}gV}{2}$, $2T+\rho_{\rm B}gV=\rho gV+T_0$. Получаем, что плотность пластика равна $\rho_{\rm \Pi}=\rho_{\rm A}-\frac{\rho_{\rm B}}{2}=400\,\frac{{\rm Kr}}{{\rm M}^3}$.

Плотность блока не может превосходить той, при которой он еще находится в равновесии, а сила натяжения нижней нити T_0 обращается в ноль. Получим, что максимальная плотность блока $\rho = 3\rho_{\rm B} - 2\rho_{\rm A} = 1200 \frac{{\rm Kr}}{{\rm m}^3}$.

Уровень изменится за счет уменьшения объема льда(который стал водой) $\Delta V_1 = \frac{\rho_{\rm B} - \rho_{\rm A}}{\rho_{\rm B}} V$ и за счет уменьшения объема погруженной части пластика $\Delta V_2 = \left(\frac{1}{2} - \left(\frac{\rho_{\rm A} - \frac{\rho_{\rm B}}{2}}{\rho_{\rm B}}\right)\right) V =$

 $\frac{
ho_{
m B}ho_{
m R}}{
ho_{
m B}}V$. Блок либо останется плавать (из-за нижней нити), либо упадет на дно сосуда, В любом случае, на изменение уровня воды это не повлияет. Уменьшение уровня воды $\Delta h = \frac{\Delta V_1 + \Delta V_2}{S} = \frac{
ho_{
m B}ho_{
m R}}{
ho_{
m B}}\frac{2V}{S} = 0,2$ см.

1	Расстановка сил для льда	0,5
2	Для пластика	0,5
3	Для блока	0,5
4	Условие равновесия для льда	0,5
5	Для пластика	0,5
6	Для блока	0,5
7	Плотность пластика $ ho_{\scriptscriptstyle \Pi} = ho_{\scriptscriptstyle \Lambda} - rac{ ho_{\scriptscriptstyle B}}{2}$	1,0
8	Численное значение для плотности $\rho_{\Pi} = 400 \frac{\kappa \Gamma}{M^3}$	0,5

9	Условие максимальности плотности блока	0,5
10	Ответ для плотности блока $ ho = 3 ho_{\scriptscriptstyle m B} - 2 ho_{\scriptscriptstyle m A}$	1,0
11	Численное значение $\rho=1200\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	0,5
12	Выражение для изменения объема льда	0,5
13	Выражение для объема погруженной части пластика	0,5
14	Явно написано, что ответ не зависит от плотности блока	0,5
15	Уровень воды уменьшится	0,5
16	Ответ для изменения высоты $\Delta h = \frac{\rho_{\text{B}} - \rho_{\text{Л}}}{\rho_{\text{B}}} \frac{2V}{S}$	1,0
17	Численное значением $\Delta h = 0.2$ см	0,5

- **9.4. Тепловые скорости (фольклор)** В калориметр помещают два тела равной массы с температурами $t_1=60\,^{\circ}\text{C}$ и $t_2=0\,^{\circ}\text{C}$ соответственно. Вначале горячее тело остывает со скоростью $\gamma_1=1\,^{\circ}\frac{\text{C}}{\text{c}}$, а холодное нагревается со скоростью $\gamma_2=2\,^{\circ}\frac{\text{C}}{\text{c}}$. Определите:
 - отношение удельных теплоемкостей тел c_1/c_2 ;
 - температуру тел t после завершения теплообмена.

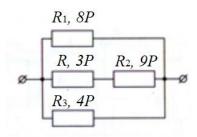
Решение.

За небольшое время $\Delta \tau$ первое тело остыло на $\gamma_1 \Delta \tau$ градусов Цельсия, а второе тело нагрелось на $\gamma_2 \Delta \tau$ градусов Цельсия. Уравнение теплового баланса $c_1 m \gamma_1 \Delta \tau = c_2 m \gamma_2 \Delta \tau$, откуда $\frac{c_1}{c_2} = \frac{\gamma_2}{\gamma_1} = 2$.

Уравнение теплового баланса $c_1m(t_1-t)=c_2m(t-t_2)$. С учетом $\frac{c_1}{c_2}=\frac{\gamma_2}{\gamma_1}=2$ получим искомый ответ $t=\frac{\gamma_1t_2+\gamma_2t_1}{\gamma_1+\gamma_2}=\frac{2t_1+t_2}{3}=40$ °C.

1	Малое изменение температуры выражено через малое изменение	1 балл
	времени $\Delta t = \gamma \Delta \tau$	
2	Уравнение теплового баланса для небольшого времени остывания	3 балла
	$c_1 m \gamma_1 \Delta \tau = c_2 m \gamma_2 \Delta \tau$	
3	$\frac{c_1}{c_2} = \frac{\gamma_2}{\gamma_2} = 2$	1 балл
	$c_2 \gamma_1$	
4	$\frac{c_1}{c_2} = 2$	1 балл
	c_2	
5	Уравнение теплового баланса (нахождение конечной температуры)	2 балла
	$c_1 m(t_1 - t) = c_2 m(t - t_2)$	
6	$t - \frac{\gamma_1 t_2 + \gamma_2 t_1}{\gamma_1 t_2 + \gamma_2 t_1}$	1 балл
	$t - \frac{1}{\gamma_1 + \gamma_2}$	
7	$t = 40^{\circ}$ C	1 балл

9.5. Разные мощности (Рубцов Д.). Считая известными соотношения между мощностями, выделяющимися на резисторах, а также одно из сопротивлений R, определите сопротивления остальных трех резисторов R_1 , R_2 , R_3 .



Решение:

Через резисторы R и R_2 текут токи одинаковой силы I. Выделяющиеся на них мощности $3P=I^2R$ и $9P=I^2R_2$. Тогда $R_2=3R$. Суммарное сопротивление средней ветви $R+R_2=4R$.

На всех трех ветвях падает одинаковое напряжение U. Выделяющиеся мощности на каждой ветви $8P=\frac{U^2}{R_1}$, $12P=\frac{U^2}{4R}$ и $4P=\frac{U^2}{R_3}$. Откуда $R_1=6R$ и $R_3=12R$.

Критерии оценивания (10 баллов)

Задачу можно решать различными способами. Приведем примерную схему оценивания

1	Продемонстрировано знание о том, что при последовательном	2 балла
	соединении одинаковы силы тока, а при параллельном - напряжения	
2	Продемонстрированы знания формул мощности $P = UI = I^2 R = \frac{U^2}{R}$	2 балла
	(какие-нибудь, в зависимости от хода решения)	
3	$R_1 = 6R$	2 балла
4	$R_2 = 3R$	2 балла
5	$R_3 = 12R$	2 балла

10.1. Равномерно или ускоренно? (Рубцов Д.) Внешний диаметр скотча при разматывании уменьшается с постоянной скоростью $D(t) = D_0 - ut$. Как зависит от времени длина размотанной части скотча x(t)? Явно выпишите параметры полученной зависимости x(t), например, начальную скорость увеличения длины размотанной части v_0 и ускорение a (если оно постоянно), с которой эта скорость изменяется. Считайте известными начальный диаметр скотча D_0 , скорость u и толщину скотча u.

Решение.

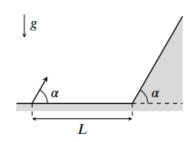
Объем ленты скотча при разматывании не изменяется. Пусть внутренний диаметр скотча d, а ширина скотча l. Тогда начальный объем скотча $V=\frac{\pi(D_0^2-d^2)}{4}l$. В произвольный момент времени после разматывания объем скотча $V=\frac{\pi((D_0-ut)^2-d^2)}{4}l+x(t)hl$. Из равенства объемов следует

$$x(t) = \frac{\pi D_0 u}{2h} t - \frac{\pi u^2}{2h} t^2 = v_0 t - \frac{at^2}{2h}$$

Таким образом, начальная длина размотанной части скотча увеличивается со скоростью $v_0 = \frac{\pi D_0 u}{2h}$. Эта скорость, в свое время, по ходу движения уменьшается со скоростью $a = \frac{\pi u^2}{2h}$.

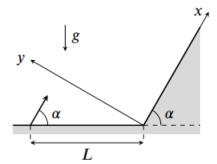
1	Идея сохранения объемов	2 балла
2	Начальный объем $\frac{\pi(D_0^2-d^2)}{4}l$ или $\frac{\pi D_0^2}{4}l$	1 балл
3	Объем рулона в произвольный момент времени	1 балл
	$rac{\piig((D_0-ut)^2-d^2ig)}{4}l$ или $rac{\piig((D_0-ut)^2ig)}{4}l$	
4	Объем размотанной части скотча в произвольный момент времени	1 балл
	x(t)hl	
5	$x(t) = \frac{\pi D_0 u}{2h} t - \frac{\pi u^2}{\frac{2h}{2}} t^2$	2 балла
	$x(t) = \frac{1}{2h}t - \frac{1}{2}$	
6	$\pi D_0 u$	1 балл
	$v_0 = \frac{1}{2h}$	
7	πu^2 πu^2	2 балла
	$a = \frac{1}{2h}$ или $a = -\frac{1}{2h}$	

10.2. Кидаем в гору! (по мотивам МЭ ВсОШ Татарстана, автор Заяц А.Е.) На расстоянии L от начала наклонной плоскости, поверхность которой образует угол α с горизонтом, бросают камень со скоростью v_0 под таким же углом к горизонту в сторону наклонной плоскости. Определите время полета камня. Наклонная плоскость длинная, сопротивления воздуха нет. Ускорение свободного падения g.



Решение.

Пусть скорость v_0 небольшая, так что камень не долетает до наклонной плоскости. Время полета в этом случае, очевидно, $t=\frac{2v_0\sin\alpha}{g}$. Этот ответ имеет смысл при дальности полета $\frac{v_0^2\sin2\alpha}{g}$ меньше L.

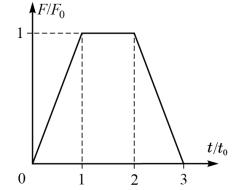


Способ 1 («изящный»). Если скорость довольно большая, такая, что камень долетает до наклонной плоскости, для нахождения времени полета удобно записать уравнение движения на ось, перпендикулярную наклонной плоскости. Пусть нуль этой оси 0y находится у подножия наклонной плоскости. Тогда начальная координата камня $y_0 = L \sin \alpha$, проекция начальной скорости $v_{y0} = 0$, а проекция ускорения $a_y = -g \cos \alpha$. Прилет на гору означает y(t) = 0. Так что $L \sin \alpha - \frac{g \cos \alpha t^2}{2} = 0$ и время полета $t = \sqrt{\frac{2L \tan \alpha}{g}}$.

Способ 2 («обычный»). Пусть камень падает на наклонную плоскость на расстоянии S от ее начала. Уравнение движения на «обычные» горизонтальную и вертикальную оси $L+S\cos\alpha=v_0\cos\alpha t$ и $S\sin\alpha=v_0\sin\alpha-\frac{gt^2}{2}$. Из этих уравнений следует тот же ответ $t=\sqrt{\frac{2L\tan\alpha}{g}}$. Ответ: $t=\begin{cases} \frac{2v_0\sin\alpha}{g} & \text{при } \frac{v_0^2\sin2\alpha}{g} \leq L \\ \sqrt{\frac{2L\tan\alpha}{g}} & \text{при } \frac{v_0^2\sin2\alpha}{g} > L \end{cases}$

1	Есть понимание, что камень может приземлиться как на наклонной, так и на горизонтальной плоскости	1 балл
2	$t = \frac{2v_0 \sin \alpha}{g}$	2 балла
3	Условие применимости ответа $\frac{v_0^2 \sin 2\alpha}{g} \le L$	1 балл
4	Записаны уравнения движения (одно или два в зависимости от хода решения) в случае падения на наклонную плоскость	4 балла
5	$t = \sqrt{\frac{2L\tan\alpha}{g}}$	2 балла

10.3.В бассейне (Рубцов Д.). Пловец массой m=50 кг отталкивается от бортиков бассейна. Сила давления от бортика изменяется так, как показано на рисунке (величины $F_0=1$ кН и $t_0=0.1$ с считайте известными). Определите:



- 1) скорость пловца v_0 сразу после толчка;
- 2) расстояние L от бортика, на котором остановится пловец, если после толчка не будет прилагать усилий.

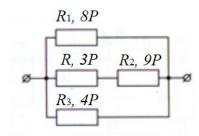
Сила сопротивления, действующая со стороны воды на пловца, пропорциональна его скорости $\overrightarrow{F_{\rm c}} = -k \vec{v} \ (k=100 {\rm Kr \over c})$. Смещением пловца за время отталкивания можно пренебречь. Сила тяжести пловца компенсируется силой Архимеда. Движение пловца горизонтально.

Решение:

- 1) За малое время Δt импульс силы давления равен $F(t)\Delta t$. Геометрически это площадь маленького столбика под графиком F(t). За всё время отталкивания импульс силы давления тогда равен полной площади под графиком $p_0=2F_0t_0$. Этот импульс идет на изменение импульса пловца mv_0 . Таким образом, $p_0=2F_0t_0=mv_0$ и $v_0=\frac{2F_0t_0}{m}=4\frac{M}{c}$.
- 2) Далее при движении на пловца действует только сила сопротивления $\overrightarrow{F_c} = -k \overrightarrow{v}$, так как силы тяжести и Архимеда скомпенсированы. В проекции на горизонтальную ось второй закон Ньютона принимает вид $ma_x = -kv_x$. Домножим это уравнение на малое время Δt . Получим $ma_x\Delta t = -kv_x\Delta t$. Заметим, что $a_x\Delta t = \Delta v_x$ это малое изменение проекции скорости, а $v_x\Delta t = \Delta x$ небольшое изменение координаты пловца. Тогда $m\Delta v_x = -k\Delta x$. Суммируя это выражение от момента достижения максимальной скорости после толчка до полной остановки пловца, получаем $m(0-v_0) = -kL$, то есть $L = \frac{mv_0}{k} = \frac{p_0}{k} = \frac{2F_0t_0}{k} = 2$ м.

1	Доказательство, что импульс силы давления – это	2 балла
	площадь под графиком	
2	Найден импульс силы давления $2F_0t_0$	1 балл
3	Есть формула импульса пловца mv_0	1 балл
4	Импульс силы идет на изменение импульса пловца (в	1 балл
	формульном или любом другом виде)	
5	$v_0 = \frac{2F_0t_0}{m} = 4\frac{M}{c}.$	1 балл
6	2 закон Ньютона на горизонтальную проекцию	1 балл
	$ma_x = -kv_x$	
7	Идея домножения на 23H на Δt и суммирования	2 балла
8	$L = rac{m v_0}{k} = rac{p_0}{k} = rac{2 F_0 t_0}{k} = 2$ м	1 балл

10.4. Разные мощности (Рубцов Д.). Считая известными соотношения между мощностями, выделяющимися на резисторах, а также одно из сопротивлений R, определите сопротивления остальных трех резисторов R_1 , R_2 , R_3 .



Решение:

Через резисторы R и R_2 текут токи одинаковой силы I. Выделяющиеся на них мощности $3P = I^2R$ и $9P = I^2R_2$. Тогда $R_2 = 3R$. Суммарное сопротивление средней ветви $R + R_2 = 4R$.

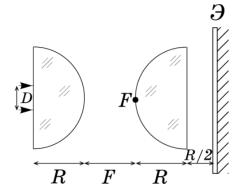
На всех трех ветвях падает одинаковое напряжение U. Выделяющиеся мощности на каждой ветви $8P=\frac{U^2}{R_1}$, $12P=\frac{U^2}{4R}$ и $4P=\frac{U^2}{R_3}$. Откуда $R_1=6R$ и $R_3=12R$.

Критерии оценивания (10 баллов)

Задачу можно решать различными способами. Приведем примерную схему оценивания

1	Продемонстрировано знание о том, что при последовательном	2 балла
	соединении одинаковы силы тока, а при параллельном - напряжения	
2	Продемонстрированы знания формул мощности $P = UI = I^2 R = \frac{U^2}{R}$	2 балла
	(какие-нибудь, в зависимости от хода решения)	
3	$R_1 = 6R$	2 балла
4	$R_2 = 3R$	2 балла
5	$R_3 = 12R$	2 балла

10.5. Работают оба полушария. На стеклянное полушарие радиусом R попадает узкий пучок света диаметром $D \ll R$. После преломления в этом полушарии пучок света фокусируется в точке F. К этой точке приставляют другое такое же полушарие, а на расстоянии R/2 от второго полушария ставят экран. Показатель преломления стекла равен n. Пучок света и оба полушария соосны. Отражением пренебречь. Определите фокусное расстояние F и площадь светового пятна на экране. При

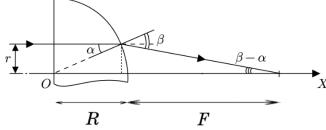


каких показателях преломления стекла площадь светового пятна будет больше, чем исходная площадь пучка?

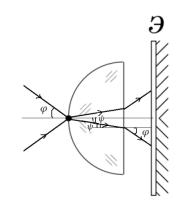
Решение (Рубцов Д.)

Рассмотрим луч, падающий на левое полушарие на расстоянии r от оси симметрии системы. При входе в полушарие нормальный луч не преломляется.

При выходе из полушария угол его падения α : $\sin \alpha = \frac{r}{R}$. Угол преломления β находится из закона Снелла $n \sin \alpha = \sin \beta$.



Угол наклона к оси симметрии системы преломленного луча равен $(\beta-\alpha)$. Его также можно найти из геометрических соотношений $\tan(\beta-\alpha)\approx\frac{r}{F}$. Из предыдущих уравнений и из свойства малых углов $\sin\phi\approx\tan\phi\approx\phi$ получаем $F=\frac{R}{n-1}$. Заметим, что ответ в приближениях задачи не зависит от r, то есть, действительно, весь пучок соберется в одной точке.



Максимальный угол падения на второе полушарие равен

 $\varphi = (\beta - \alpha)_{\text{макс}} \approx (n-1)\alpha_{\text{макс}} = \frac{(n-1)D}{2R}$. Тогда максимальный угол преломления ψ легко находится из закона Снелла $\sin \varphi = n \sin \psi$. С учетом малости углов $\psi \approx \frac{(n-1)D}{2Rn}$. При выходе из второго полушария угол падения будет ψ , а угол преломления, очевидно, ψ (как в плоскопараллельной пластине).

Таким образом, радиус светового пятна на экране равен $\rho=R\tan\psi+\frac{R}{2}\tan\varphi\approx R\left(\frac{(n-1)D}{2Rn}+\frac{(n-1)D}{4R}\right)=R\frac{(n-1)D}{2R}\left(\frac{1}{n}+\frac{1}{2}\right)=\frac{(n-1)D(n+2)}{4n}$, а его площадь $S=\pi\rho^2=\pi\left(\frac{(n-1)D(n+2)}{4n}\right)^2$. Эта площадь больше, чем площадь исходного светового пучка $S_0=\frac{\pi D^2}{4}$ при $\frac{(n-1)D(n+2)}{4n}>\frac{D}{2}$, то есть при $n^2-n-2>0$ или $n\in(-\infty,-1)\cup(2,+\infty)$. Физический смысл имеет только ограничение n>2. Материалы с таким показателем преломления есть, например, алмаз \odot .

1 Написано, что нормальные лучи не преломляются 0,5 балла 2 Закон Снелла при выходе из первого полушария $n \sin \alpha = \sin \beta$. 1 балл 3 Углы выражены через геометрические размеры $\sin \alpha = \frac{r}{R}$ и $\tan(\beta - \alpha) \approx \frac{r}{F}$ 2 балла 4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла 5 R 1 балл	
$n \sin \alpha = \sin \beta$. 3 Углы выражены через геометрические размеры 2 балла $\sin \alpha = \frac{r}{R}$ и $\tan(\beta - \alpha) \approx \frac{r}{F}$ 4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла	
3 Углы выражены через геометрические размеры $\sin \alpha = \frac{r}{R}$ и $\tan(\beta - \alpha) \approx \frac{r}{F}$ 4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла	
$\sin \alpha = \frac{r}{R}$ и $\tan(\beta - \alpha) \approx \frac{r}{F}$ 4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла	
$\sin \alpha = \frac{r}{R}$ и $\tan(\beta - \alpha) \approx \frac{r}{F}$ 4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла	
4 Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$ 0,5 балла	
5 R 1 банд	
$F = \frac{R}{R}$	
$F = \frac{n}{n-1}$	
6 Найдено, что угол раствора сходящегося пучка равен 1 балл	
$\varphi = \frac{(n-1)D}{2R}$	
7 Законы Снелла для крайних лучей при входе и при 0,5 балла	
выходе из второго полушария $\sin \varphi = n \sin \psi$	
8 Найдено вертикальное смещение крайних лучей во 0,5 балла	
втором полушарии R $ an\psi$	
9 Найдено дополнительное вертикальное смещение 0,5 балла	
крайних лучей вне второго полушария $\frac{R}{2} \tan \varphi$	
10 Радиус светового пятна $\rho = \frac{(n-1)D(n+2)}{4n}$ 0,5 балла	
Площадь светового пятна $S = \pi \rho^2 = \pi \left(\frac{1}{4n} \right)$	
12 При $n > 2$ площадь светового пятна будет больше, 1 балл	
чем исходная площадь пучка	

11.1. В невесомости?

В сосуд высотой 4h налита жидкость, плотность которой изменяется линейно с глубиной от ρ до 4ρ . Слои жидкостей не перемешиваются. Ускорение свободного падения g. В сосуд опускают маленькую каплю масла плотностью 2ρ , не смешивающегося с жидкостью в сосуде.

- 1. На какой глубине окажется капля в состоянии равновесия?
- 2. Какую форму будет иметь капля в состоянии равновесия? Ответ обоснуйте.

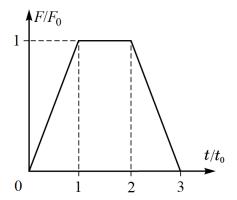
Решение (Рубцов Д.)

Плотность жидкости в зависимости от глубины $\rho(x) = \rho + \frac{3\rho}{4h}x$. Капля будет в равновесии, если окружающая ее жидкость будет иметь такую же плотность, как и сама капля, то есть $\rho(x_0) = \rho + \frac{3\rho}{4h}x_0 = 2\rho$. Искомая глубина $x_0 = \frac{4}{3}h$.

В состоянии равновесия силы тяжести и Архимеда компенсированы, капля находится в состоянии «невесомости». Единственные силы, влияющие на ее форму – это силы поверхностного натяжения. Энергия поверхностного слоя $W=\sigma S$. Капля стремится принять состояние минимума потенциальной энергии, то есть форму минимальной площади поверхности. При фиксированном объеме капли, минимальная площадь достигается для формы шара.

1	Условие плавания в каком-нибудь виде	1 балл
2	$\rho(x) = \rho + \frac{3\rho}{4h}x$	1 балл
3	$x_0 = \frac{4}{3}h$	2 балла
4	Утверждение, что форма капли зависит от энергии поверхностного	1 балл
	слоя (в любом виде)	
5	$W = \sigma S$	1 балл
6	Утверждение, что капля стремится принять форму минимальной	2 балла
	площади поверхности	
7	Ответ – шар (оценивается только при наличии корректного	2 балла
	обоснования)	

11.2. В бассейне (Рубцов Д.). Пловец массой m=50 кг отталкивается от бортиков бассейна. Сила давления от бортика изменяется так, как показано на рисунке (величины $F_0=1$ кН и $t_0=0.1$ с считайте известными). Определите:



- 3) скорость пловца v_0 сразу после толчка;
- 4) расстояние L от бортика, на котором остановится пловец, если после толчка не будет прилагать усилий.

Сила сопротивления, действующая со стороны воды на пловца, пропорциональна его скорости $\overrightarrow{F_{\rm c}} = -k \vec{v} \ (k=100 {\rm Kr \over c})$. Смещением пловца за время отталкивания можно пренебречь. Сила тяжести пловца компенсируется силой Архимеда. Движение пловца горизонтально.

Решение:

- 3) За малое время Δt импульс силы давления равен $F(t)\Delta t$. Геометрически это площадь маленького столбика под графиком F(t). За всё время отталкивания импульс силы давления тогда равен полной площади под графиком $p_0=2F_0t_0$. Этот импульс идет на изменение импульса пловца mv_0 . Таким образом, $p_0=2F_0t_0=mv_0$ и $v_0=\frac{2F_0t_0}{m}=4\frac{M}{c}$.
- 4) Далее при движении на пловца действует только сила сопротивления $\overrightarrow{F_c} = -k \overrightarrow{v}$, так как силы тяжести и Архимеда скомпенсированы. В проекции на горизонтальную ось второй закон Ньютона принимает вид $ma_x = -kv_x$. Домножим это уравнение на малое время Δt . Получим $ma_x\Delta t = -kv_x\Delta t$. Заметим, что $a_x\Delta t = \Delta v_x$ это малое изменение проекции скорости, а $v_x\Delta t = \Delta x$ небольшое изменение координаты пловца. Тогда $m\Delta v_x = -k\Delta x$. Суммируя это выражение от момента достижения максимальной скорости после толчка до полной остановки пловца, получаем $m(0-v_0) = -kL$, то есть $L = \frac{mv_0}{k} = \frac{p_0}{k} = \frac{2F_0t_0}{k} = 2$ м.

1	Доказательство, что импульс силы давления – это	2 балла
	площадь под графиком	
2	Найден импульс силы давления $2F_0t_0$	1 балл
3	Есть формула импульса пловца mv_0	1 балл
4	Импульс силы идет на изменение импульса пловца (в	1 балл
	формульном или любом другом виде)	
5	$v_0 = \frac{2F_0t_0}{m} = 4\frac{M}{c}.$	1 балл
6	2 закон Ньютона на горизонтальную проекцию	1 балл
	$ma_x = -kv_x$	
7	Идея домножения на 23H на Δt и суммирования	2 балла
8	$L = rac{m v_0}{k} = rac{p_0}{k} = rac{2 F_0 t_0}{k} = 2$ м	1 балл

11.3. Максимальный угол. Небольшая равномерно заряженная диэлектрическая пылинка, имеющая форму шара радиусом R, помещена внутрь плоского воздушного конденсатора, обкладки которого имеют поверхностные заряды $\pm \sigma$. Определите заряд пылинки q, если максимальный угол между векторами напряженности результирующего поля и нормалями обкладок равен $\alpha = 30^{\circ}$? Краевыми эффектами пренебречь.

Решение (по мотивам задачи из книги «Олимпиадные задачи по физике» М.И.Бакунова и С.Б.Бирагова)

Поле конденсатора однородно, перпендикулярно обкладкам конденсаторов и равно $E_0 = \frac{\sigma}{\varepsilon_0}$. Поле пылинки линейно растет внутри нее, а затем квадратично убывает вне ее. Максимальное поле от пылинки достигается на ее поверхности и равно $E_{\text{пыл}} = \frac{q}{4\pi\varepsilon_0 R^2}$.

Результирующее поле - это векторная сумма напряженности поля конденсатора и пылинки $\overrightarrow{E_{\text{pe3}}} = \overrightarrow{E_0} + \overrightarrow{E_{\text{пыл}}}$.

Существование максимального угла, меньшего π , между вектором напряженности результирующего поля и вектором $\overrightarrow{E_0}$ означает, что в любой точке напряженность поля, создаваемого шаром, меньше $\overrightarrow{E_0}$.

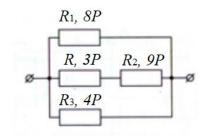
 $\mathbf{E}_{ ext{c} ext{pepb}}$

При фиксированном значении заряда шара максимальный угол между вектором напряженности результирующего поля и вектором $\overrightarrow{E_0}$ достигается в тех точках, где напряженность поля шара максимальна (вблизи поверхности) и ориентирована так, что результирующее поле перпендикулярно полю сферы (см.рис., где окружность показывает возможные положения концов вектора поля сферы и вектора результирующего поля).

Из рисунка следует, что поле сферы должно быть направлено под углом 120° к полю $\overrightarrow{E_0}$ и равняться $E_0/2$. Так что $\frac{q}{4\pi\varepsilon_0R^2}=\frac{\sigma}{2\varepsilon_0}$ и $q=2\pi\sigma R^2$.

1	Поле конденсатора $E_0 = \frac{\sigma}{\varepsilon_0}$	1 балл
2	Поле на поверхности шара $\frac{q}{4\pi\varepsilon_0 R^2}$	1 балл
3	Принцип суперпозиции $\overrightarrow{E_{ m pes}} = \overrightarrow{E_0} + \overrightarrow{E_{ m cферы}}$	1 балл
4	Угол 30° достигается на поверхности шара	1 балл
5	Картинка достижения максимального угла (или аналогичное)	2 балла
6	$E_{\text{пыл}} = E_0/2$	2 балла
7	$E_{\text{пыл}} = E_0/2$ $q = 2\pi\sigma R^2$	2 балла

11.4. Разные мощности (Рубцов Д.). Считая известными соотношения между мощностями, выделяющимися на резисторах, а также одно из сопротивлений R, определите сопротивления остальных трех резисторов R_1 , R_2 , R_3 .



Решение:

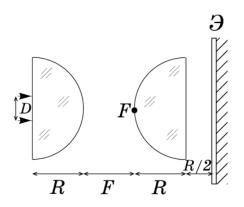
Через резисторы R и R_2 текут токи одинаковой силы I. Выделяющиеся на них мощности $3P=I^2R$ и $9P=I^2R_2$. Тогда $R_2=3R$. Суммарное сопротивление средней ветви $R+R_2=4R$.

На всех трех ветвях падает одинаковое напряжение U. Выделяющиеся мощности на каждой ветви $8P=\frac{U^2}{R_1}$, $12P=\frac{U^2}{4R}$ и $4P=\frac{U^2}{R_3}$. Откуда $R_1=6R$ и $R_3=12R$.

Критерии оценивания (10 баллов). Задачу можно решать различными способами. Приведем примерную схему оценивания

1	Продемонстрировано знание о том, что при последовательном	2 балла
	соединении одинаковы силы тока, а при параллельном - напряжения	
2	Продемонстрированы знания формул мощности $P = UI = I^2 R = \frac{U^2}{R}$	2 балла
	(какие-нибудь, в зависимости от хода решения)	
3	$R_1 = 6R$	2 балла
4	$R_2 = 3R$	2 балла
5	$R_3 = 12R$	2 балла

11.5. Работают оба полушария. На стеклянное полушарие радиусом R попадает узкий пучок света диаметром $D \ll R$. После преломления в этом полушарии пучок света фокусируется в точке F. К этой точке приставляют другое такое же полушарие, а на расстоянии R/2 от второго полушария ставят экран. Показатель преломления стекла равен n. Пучок света и оба полушария соосны. Отражением пренебречь. Определите фокусное расстояние F и площадь светового пятна на экране. При каких показателях преломления стекла площадь светового пятна будет больше, чем исходная площадь пучка?

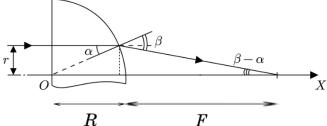


Решение (Рубцов Д.)

Рассмотрим луч, падающий на левое полушарие на расстоянии r от оси симметрии системы. При входе в полушарие нормальный луч не преломляется.

При выходе из полушария угол его падения α : $\sin \alpha = \frac{r}{R}$. Угол преломления β находится из закона Снелла $n \sin \alpha = \sin \beta$.

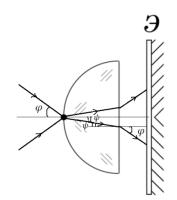
Угол наклона к оси симметрии системы преломленного луча равен ($\beta - \alpha$). Его



также можно найти из геометрических соотношений $\tan(\beta-\alpha)\approx \frac{r}{F}$. Из предыдущих уравнений и из свойства малых углов $\sin\varphi\approx\tan\varphi\approx\varphi$ получаем $F=\frac{R}{n-1}$. Заметим, что ответ в приближениях задачи не зависит от r, то есть, действительно, весь пучок соберется в одной точке.

Максимальный угол падения на второе полушарие равен

 $\varphi = (\beta - \alpha)_{\text{макс}} \approx (n-1)\alpha_{\text{макс}} = \frac{(n-1)D}{2R}$. Тогда максимальный угол преломления ψ легко находится из закона Снелла $\sin \varphi = n \sin \psi$. С учетом малости углов $\psi \approx \frac{(n-1)D}{2Rn}$. При выходе из второго полушария угол падения будет ψ , а угол преломления, очевидно, ψ (как в плоскопараллельной пластине).



Таким образом, радиус светового пятна на экране равен $\rho = R \tan \psi + \frac{R}{2} \tan \varphi \approx R \left(\frac{(n-1)D}{2Rn} + \frac{(n-1)D}{4R} \right) = R \frac{(n-1)D}{2R} \left(\frac{1}{n} + \frac{1}{2} \right) =$

 $\frac{(n-1)D(n+2)}{4n}$, а его площадь $S=\pi \rho^2=\pi \left(\frac{(n-1)D(n+2)}{4n}\right)^2$. Эта площадь больше, чем площадь исходного светового пучка $S_0=\frac{\pi D^2}{4}$ при $\frac{(n-1)D(n+2)}{4n}>\frac{D}{2}$, то есть при $n^2-n-2>0$ или $n\in (-\infty,-1)\cup (2,+\infty)$. Физический смысл имеет только ограничение n>2. Материалы с таким показателем преломления есть, например, алмаз \odot .

1	Написано, что нормальные лучи не преломляются	0,5 балла
2	Закон Снелла при выходе из первого полушария	1 балл
	$n \sin \alpha = \sin \beta$.	
3	Углы выражены через геометрические размеры	2 балла
	$\sin\alpha = \frac{r}{R} \operatorname{utan}(\beta - \alpha) \approx \frac{r}{F}$	
4	Приближение малых углов $\sin \varphi \approx \tan \varphi \approx \varphi$	0,5 балла
5	$_{\Gamma}$ $ R$	1 балл
	$F = \frac{R}{n-1}$	
6	Найдено, что угол раствора сходящегося пучка равен	1 балл
	$\varphi = \frac{(n-1)D}{2R}$	
7	Законы Снелла для крайних лучей при входе и при	0,5 балла
,	выходе из второго полушария $\sin \varphi = n \sin \psi$	
8	Найдено вертикальное смещение крайних лучей во	0,5 балла
	втором полушарии R $ an \psi$	
9	Найдено дополнительное вертикальное смещение	0,5 балла
	крайних лучей вне второго полушария $rac{R}{2}$ $ an arphi$	
10	Радиус светового пятна $\rho = \frac{(n-1)D(n+2)}{4n}$	0,5 балла
11	Площадь светового пятна $S=\pi \rho^2=\pi \left(\frac{(n-1)D(n+2)}{4n}\right)^2$	1 балл
12	При $n > 2$ площадь светового пятна будет больше,	1 балл
	чем исходная площадь пучка	